A 100-Year Review: From ascorbic acid to zinc-Mineral and vitamin nutrition of dairy cows

W P Weiss 

J Dairy Sci. 2017 Dec;100(12):10045-10060. doi: 10.3168/jds.2017-12935.



Mineral and vitamin nutrition of dairy cows was studied before the first volume of the Journal of Dairy Science was published and is still actively researched today. The initial studies on mineral nutrition of dairy cows were simple balance experiments (although the methods available at the time for measuring minerals were anything but simple). Output of Ca and P in feces, urine, and milk was subtracted from intake of Ca and P, and if values were negative it was often assumed that cows were lacking in the particular mineral. As analytical methods improved, more minerals were found to be required by dairy cows, and blood and tissue concentrations became primary response variables. Those measures often were poorly related to cow health, leading to the use of disease prevalence and immune function as a measure of mineral adequacy. As data were generated, mineral requirements became more accurate and included more sources of variation. In addition to milk yield and body weight inputs, bioavailability coefficients of minerals from different sources are used to formulate diets that can meet the needs of the cow without excessive excretion of minerals in manure, which negatively affects the environment. Milk, or more accurately the lack of milk in human diets, was central to the discovery of vitamins, but research into vitamin nutrition of cows developed slowly. For many decades bioassays were the only available method for measuring vitamin concentrations, which greatly limited research. The history of vitamin nutrition mirrors that of mineral nutrition. Among the first experiments conducted on vitamin nutrition of cows were those examining the factors affecting vitamin concentrations of milk. This was followed by determining the amount of vitamins needed to prevent deficiency diseases, which evolved into research to determine the amount of vitamins required to promote overall good health. The majority of research was conducted on vitamins A, D, and E because these vitamins have a dietary requirement, and clinical and marginal deficiencies became common as diets for cows changed from pasture and full exposure to the sun to stored forage and limited sun exposure. As researchers learned new functions of fat-soluble vitamins, requirements generally increased over time. Diets generally contain substantial amounts of B vitamins, and rumen bacteria can synthesize large quantities of many B vitamins; hence, research on water-soluble vitamins lagged behind. We now know that supplementation of specific water-soluble vitamins can enhance cow health and increase milk production in certain situations. Additional research is needed to define specific requirements for many water-soluble vitamins. Both mineral and vitamin research is hampered by the lack of sensitive biomarkers of status, but advanced molecular techniques may provide measures that respond to altered supply of minerals and vitamins and that are related to health or productive responses of the cow. The overall importance of proper mineral and vitamin nutrition is known, but as we discover new and more diverse functions, better supplementation strategies should lead to even better cow health and higher production.

Keywords: health; mineral; requirements; vitamin.


Resource from Pubmed

Full Text available